3.3.16 \(\int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx\) [216]

3.3.16.1 Optimal result
3.3.16.2 Mathematica [A] (verified)
3.3.16.3 Rubi [A] (verified)
3.3.16.4 Maple [B] (verified)
3.3.16.5 Fricas [B] (verification not implemented)
3.3.16.6 Sympy [F]
3.3.16.7 Maxima [F]
3.3.16.8 Giac [B] (verification not implemented)
3.3.16.9 Mupad [F(-1)]

3.3.16.1 Optimal result

Integrand size = 28, antiderivative size = 161 \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx=-\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}+\frac {1}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {5 \sqrt {a+i a \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}+\frac {7 i \sqrt {a+i a \tan (c+d x)}}{3 a d \sqrt {\tan (c+d x)}} \]

output
(-1/2+1/2*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/ 
2))/d/a^(1/2)+7/3*I*(a+I*a*tan(d*x+c))^(1/2)/a/d/tan(d*x+c)^(1/2)+1/d/(a+I 
*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(3/2)-5/3*(a+I*a*tan(d*x+c))^(1/2)/a/d/tan 
(d*x+c)^(3/2)
 
3.3.16.2 Mathematica [A] (verified)

Time = 1.42 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.76 \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx=\frac {\frac {3 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) (i a \tan (c+d x))^{3/2}}{a^2}+\frac {-4+4 i \tan (c+d x)-14 \tan ^2(c+d x)}{\sqrt {a+i a \tan (c+d x)}}}{6 d \tan ^{\frac {3}{2}}(c+d x)} \]

input
Integrate[1/(Tan[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]]),x]
 
output
((3*Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + 
d*x]]]*(I*a*Tan[c + d*x])^(3/2))/a^2 + (-4 + (4*I)*Tan[c + d*x] - 14*Tan[c 
 + d*x]^2)/Sqrt[a + I*a*Tan[c + d*x]])/(6*d*Tan[c + d*x]^(3/2))
 
3.3.16.3 Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.05, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 4042, 27, 3042, 4081, 27, 3042, 4081, 27, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (c+d x)^{5/2} \sqrt {a+i a \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4042

\(\displaystyle \frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (5 a-4 i a \tan (c+d x))}{2 \tan ^{\frac {5}{2}}(c+d x)}dx}{a^2}+\frac {1}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (5 a-4 i a \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)}dx}{2 a^2}+\frac {1}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (5 a-4 i a \tan (c+d x))}{\tan (c+d x)^{5/2}}dx}{2 a^2}+\frac {1}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4081

\(\displaystyle \frac {\frac {2 \int -\frac {\sqrt {i \tan (c+d x) a+a} \left (10 \tan (c+d x) a^2+7 i a^2\right )}{2 \tan ^{\frac {3}{2}}(c+d x)}dx}{3 a}-\frac {10 a \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (10 \tan (c+d x) a^2+7 i a^2\right )}{\tan ^{\frac {3}{2}}(c+d x)}dx}{3 a}-\frac {10 a \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (10 \tan (c+d x) a^2+7 i a^2\right )}{\tan (c+d x)^{3/2}}dx}{3 a}-\frac {10 a \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4081

\(\displaystyle \frac {-\frac {\frac {2 \int \frac {3 a^3 \sqrt {i \tan (c+d x) a+a}}{2 \sqrt {\tan (c+d x)}}dx}{a}-\frac {14 i a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {10 a \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {3 a^2 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {14 i a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {10 a \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {3 a^2 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {14 i a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {10 a \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {-\frac {-\frac {6 i a^4 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {14 i a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {10 a \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {-\frac {\frac {(3-3 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {14 i a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {10 a \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {1}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}\)

input
Int[1/(Tan[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]]),x]
 
output
1/(d*Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]]) + ((-10*a*Sqrt[a + I*a 
*Tan[c + d*x]])/(3*d*Tan[c + d*x]^(3/2)) - (((3 - 3*I)*a^(5/2)*ArcTanh[((1 
 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - ((14*I) 
*a^2*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]))/(3*a))/(2*a^2)
 

3.3.16.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4042
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^(n + 1)/(2*f*m*(b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d))   In 
t[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*c*m - a*d*(2*m 
 + n + 1) + b*d*(m + n + 1)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] 
 && LtQ[m, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4081
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*(n + 
1)*(c^2 + d^2))), x] - Simp[1/(a*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + 
f*x])^m*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c* 
m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Fr 
eeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 
0] && LtQ[n, -1]
 
3.3.16.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 400 vs. \(2 (128 ) = 256\).

Time = 1.21 (sec) , antiderivative size = 401, normalized size of antiderivative = 2.49

method result size
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )+36 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )-3 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+28 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right )+6 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )+8 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{12 d a \tan \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}}\) \(401\)
default \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )+36 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )-3 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+28 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right )+6 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )+8 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{12 d a \tan \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}}\) \(401\)

input
int(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(5/2),x,method=_RETURNVERBOSE)
 
output
1/12/d*(a*(1+I*tan(d*x+c)))^(1/2)/a/tan(d*x+c)^(3/2)*(3*I*2^(1/2)*ln(-(-2* 
2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x 
+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^4+36*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan 
(d*x+c)))^(1/2)*tan(d*x+c)^2-3*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*t 
an(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*ta 
n(d*x+c)^2+28*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x 
+c)^3+6*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c) 
))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^3+8*(a*tan(d*x+c 
)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1 
/2)/(-I*a)^(1/2)/(-tan(d*x+c)+I)^2
 
3.3.16.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 403 vs. \(2 (119) = 238\).

Time = 0.26 (sec) , antiderivative size = 403, normalized size of antiderivative = 2.50 \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx=-\frac {2 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (7 \, e^{\left (6 i \, d x + 6 i \, c\right )} - 11 \, e^{\left (4 i \, d x + 4 i \, c\right )} - 15 \, e^{\left (2 i \, d x + 2 i \, c\right )} + 3\right )} + 3 \, {\left (a d e^{\left (5 i \, d x + 5 i \, c\right )} - 2 \, a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {-\frac {2 i}{a d^{2}}} \log \left (\frac {1}{4} \, a d \sqrt {-\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - 3 \, {\left (a d e^{\left (5 i \, d x + 5 i \, c\right )} - 2 \, a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {-\frac {2 i}{a d^{2}}} \log \left (-\frac {1}{4} \, a d \sqrt {-\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right )}{12 \, {\left (a d e^{\left (5 i \, d x + 5 i \, c\right )} - 2 \, a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )}} \]

input
integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(5/2),x, algorithm="fricas 
")
 
output
-1/12*(2*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2 
*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(7*e^(6*I*d*x + 6*I*c) - 11*e^(4*I*d 
*x + 4*I*c) - 15*e^(2*I*d*x + 2*I*c) + 3) + 3*(a*d*e^(5*I*d*x + 5*I*c) - 2 
*a*d*e^(3*I*d*x + 3*I*c) + a*d*e^(I*d*x + I*c))*sqrt(-2*I/(a*d^2))*log(1/4 
*a*d*sqrt(-2*I/(a*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 
 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) 
*(e^(2*I*d*x + 2*I*c) + 1)) - 3*(a*d*e^(5*I*d*x + 5*I*c) - 2*a*d*e^(3*I*d* 
x + 3*I*c) + a*d*e^(I*d*x + I*c))*sqrt(-2*I/(a*d^2))*log(-1/4*a*d*sqrt(-2* 
I/(a*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)) 
*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x 
+ 2*I*c) + 1)))/(a*d*e^(5*I*d*x + 5*I*c) - 2*a*d*e^(3*I*d*x + 3*I*c) + a*d 
*e^(I*d*x + I*c))
 
3.3.16.6 Sympy [F]

\[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {1}{\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \tan ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate(1/(a+I*a*tan(d*x+c))**(1/2)/tan(d*x+c)**(5/2),x)
 
output
Integral(1/(sqrt(I*a*(tan(c + d*x) - I))*tan(c + d*x)**(5/2)), x)
 
3.3.16.7 Maxima [F]

\[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx=\int { \frac {1}{\sqrt {i \, a \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(5/2),x, algorithm="maxima 
")
 
output
integrate(1/(sqrt(I*a*tan(d*x + c) + a)*tan(d*x + c)^(5/2)), x)
 
3.3.16.8 Giac [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 404 vs. \(2 (119) = 238\).

Time = 1.68 (sec) , antiderivative size = 404, normalized size of antiderivative = 2.51 \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx=\frac {\sqrt {-2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} \sqrt {i \, a \tan \left (d x + c\right ) + a} {\left (\frac {\tan \left (d x + c\right )}{\sqrt {\frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + a^{2}}{a^{2}}}} + 1\right )} {\left (\frac {2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}}{a^{2} d} - \frac {3}{a d}\right )} {\left | a \right |}}{3 \, a^{2} \tan \left (d x + c\right )^{2}} + \frac {{\left (a \sqrt {{\left | a \right |}} + i \, {\left | a \right |}^{\frac {3}{2}}\right )} \arctan \left (\frac {1}{16} \, \sqrt {2} {\left ({\left (\frac {\sqrt {2} \sqrt {i \, a \tan \left (d x + c\right ) + a} {\left (-\frac {i \, {\left | a \right |}}{a} + 1\right )} {\left | a \right |}^{\frac {3}{2}}}{a^{2}} - \frac {\sqrt {-2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} {\left (\frac {\tan \left (d x + c\right )}{\sqrt {\frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + a^{2}}{a^{2}}}} + 1\right )} {\left | a \right |}}{a^{2}}\right )}^{2} + 12 i\right )}\right )}{2 \, a^{2} d} + \frac {4 \, \sqrt {2} {\left (a \sqrt {{\left | a \right |}} + i \, {\left | a \right |}^{\frac {3}{2}}\right )}}{{\left ({\left (\frac {\sqrt {2} \sqrt {i \, a \tan \left (d x + c\right ) + a} {\left (-\frac {i \, {\left | a \right |}}{a} + 1\right )} {\left | a \right |}^{\frac {3}{2}}}{a^{2}} - \frac {\sqrt {-2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} {\left (\frac {\tan \left (d x + c\right )}{\sqrt {\frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + a^{2}}{a^{2}}}} + 1\right )} {\left | a \right |}}{a^{2}}\right )}^{2} - 4 i\right )} a^{2} d} \]

input
integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(5/2),x, algorithm="giac")
 
output
1/3*sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*sqrt(I*a*tan(d*x + c) + a)*( 
tan(d*x + c)/sqrt(((I*a*tan(d*x + c) + a)^2 - 2*(I*a*tan(d*x + c) + a)*a + 
 a^2)/a^2) + 1)*(2*(I*a*tan(d*x + c) + a)/(a^2*d) - 3/(a*d))*abs(a)/(a^2*t 
an(d*x + c)^2) + 1/2*(a*sqrt(abs(a)) + I*abs(a)^(3/2))*arctan(1/16*sqrt(2) 
*((sqrt(2)*sqrt(I*a*tan(d*x + c) + a)*(-I*abs(a)/a + 1)*abs(a)^(3/2)/a^2 - 
 sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*(tan(d*x + c)/sqrt(((I*a*tan(d* 
x + c) + a)^2 - 2*(I*a*tan(d*x + c) + a)*a + a^2)/a^2) + 1)*abs(a)/a^2)^2 
+ 12*I))/(a^2*d) + 4*sqrt(2)*(a*sqrt(abs(a)) + I*abs(a)^(3/2))/(((sqrt(2)* 
sqrt(I*a*tan(d*x + c) + a)*(-I*abs(a)/a + 1)*abs(a)^(3/2)/a^2 - sqrt(-2*(I 
*a*tan(d*x + c) + a)*a + 2*a^2)*(tan(d*x + c)/sqrt(((I*a*tan(d*x + c) + a) 
^2 - 2*(I*a*tan(d*x + c) + a)*a + a^2)/a^2) + 1)*abs(a)/a^2)^2 - 4*I)*a^2* 
d)
 
3.3.16.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {1}{{\mathrm {tan}\left (c+d\,x\right )}^{5/2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \]

input
int(1/(tan(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(1/2)),x)
 
output
int(1/(tan(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(1/2)), x)